Embedded Computing
  • About
  • Blog
  • Hardware
    • Which Platform?
    • Controller Platforms >
      • Adafruit Platform
      • Arduino Plaform
      • BBC micro:bit
      • Espressif Platform
      • LaunchPad Plaform
      • Microsoft Azure IoT DevKit
      • Seeeduino Platform
      • Teensy Plaform
    • Computer Platforms >
      • BeagleBone Platform
      • Mediatek Platform
      • UDOO Platform
    • Legacy Platforms >
      • chipKIT Plaform >
        • chipKIT Uno32 and uC32
        • chipKIT WF32 and WiFire
        • Compatibility
        • chipKIT PGM Programmer-Debugger
        • 4D Systems PICadillo-35T
        • Shields for chipKIT Uno32
        • 4D Systems Platform >
          • 4D Systems PICadillo-35T
          • 4D Systems gen4-IoD-28T
      • Cosa, an Alternative Framework for AVR Boards
      • DFRobot Platform >
        • DFRobot BLuno
        • DFRobot Wido
      • Digistump Platform >
        • Digispark
        • Oak
      • Intel Platform >
        • Intel Curie with Neural Network
        • Intel Edison
      • LightBlue Bean
      • Little Robot Friends
      • Maple Plaform >
        • LeafLabs Maple
      • Microduino Plaform >
        • Microduino
      • Particle Platform >
        • Particle Core
        • Particle Photon
        • Particle Tools
      • Protostack Platform >
        • Protostack Boards
      • RedBear Platform >
        • RedBearLab CC3200
        • RedBearLab WiFi Mini
        • RedBear Duo
      • Wiring Plaform >
        • Wiring S
        • Wiring Play Shield
    • Boards and Plugs
    • I²C Logic Level Converter
    • Peripherals >
      • BoosterPacks for LaunchPads
      • Shields
      • Grove System
      • Ten Years with the Grove System
      • Sensors
      • Actuators
    • Displays >
      • Pervasive Displays e-Paper Screens
      • FRAM-based E-Paper Screen Controller
      • The 2.8" HY28A LCD Screen
      • High-Definition 480x320 3.5" Screen With Touch and Fonts
      • Kentec 3.5" LCD SPI with Touch BoosterPack
      • 4D Systems Intelligent Screens
      • East Rising 5" LCD with RA8875, Touch, Fonts, Flash and SD-card
      • East Rising 5" LCD with SSD1963, Touch, Flash and SD-card
  • Software
    • The IDE Question >
      • The Battle of IDEs
      • More IDE Options
      • Looking for a Better IDE
      • Assessing the Next Generation of IDEs
    • Exploring RTOS with Galaxia >
      • Event Library
      • Semaphore Library
      • Mailbox Library
      • Timer Library
      • Clock Library
      • SWI Library
      • Task Library
    • Ultra-Low Power with EnergyTrace >
      • Ultra-Low Power with MSP430
      • Ultra-Low Power with Energia MT and Galaxia
    • Using Integers Instead of Reals
  • IoT
    • IoT Platforms: Which Hardware?
    • IoT Services: Which Solution? >
      • Recommended IoT Solutions
      • Platform-Specific IoT Solutions
      • Other IoT Solutions
      • Not tested IoT Solutions
      • Notification Solutions
    • Get Date and Time from Internet with NTP
    • Fast and Easy WiFi Connection with QR-Code
  • Tools
    • How to Start?
    • Reference >
      • Asking for Help
      • LaunchPad and BoosterPack Boards Pins Maps
      • Ruler
      • Standards for Connectors
    • Training >
      • Texas Instruments Workshops
      • Embedded Systems: Shape The World — MOOC edX UTAustinX UT.6.02x
      • Embedded Systems - Shape The World: Microcontroller Input/Output — MOOC edX UTAustinX UT.6.10x
      • Embedded Systems - Shape The World: Multi-Threaded Interfacing — MOOC edX UTAustinX UT.6.20x
      • Real-Time Bluetooth Networks: Shape the World — MOOC edX UTAustinX UT.RTBN.12.01x
      • Systems Thinking with Texas Instruments Robotics System Learning Kit
    • Books >
      • Getting Started with the MSP430 LaunchPad
      • Getting Started with Arduino
      • Arduino Cookbook
    • IDEs >
      • Texas Instruments Code Composer Studio 6
      • Texas Instruments Code Composer Studio Cloud
      • Energia
      • Tools for Documentation
    • Equipment >
      • Saleae Logic Analyser
      • Rigol DS1102E Oscilloscope
      • XDS110 Debug Probe with EnergyTrace​
      • Segger J-Link Programmer-Debugger
  • Projects
    • Libraries >
      • Master I²C Software Library
      • Date and Time Library
      • highView Library Suite
      • LCD_screen Library Suite
      • Others Libraries
    • smartDevices >
      • I²C smartColours Smart Sensor
      • I²C smartRFID Smart Sensor
      • I²C smartLED Display
      • I²C smartControls Smart Device
      • I²C smartWiFi Smart Device
      • I²C smartBLE Smart Device
      • I²C smartNode Smart Device
    • IoT Projects >
      • Remote e-Paper Messages Panel
      • Industrial IoT Project
      • Remote Contactless Temperature Monitor
      • Using Node-RED for IIoT
      • Low Power Home Network Weather Monitoring
      • Updated Low Power Home Network Weather Monitoring
      • Weather and Security Station with Blynk
      • SensorTag to Blynk Using Node-RED
      • Pervasive Reporting
    • AI Projects >
      • Colour Recognition with Neural Network
    • Other Projects >
      • Portable Particulate​ Matter Monitor
      • FRAM-based E-Paper Screen Controller
      • General Purpose 3.5" Screen
      • Colour Recognition with Neural Network
      • A Low Power Weather Station
      • Digital Volt-Amp-Watt Meter
      • Mobile Measurement with LCD Display
      • Screen with SRAM for GUI
      • Volt-Amp-Watt-Meter for Grove
      • Multi-Touch Project with CapTIvate

I²C smartRFID Smart Sensor

This project is shared with the fischertechnik Corner website, as the second smart sensor is intended for the fischertechnik Robo TX controller.

This part in more technical oriented.

Smart Sensor

I call smart sensor a device which includes its own MCU. The MCU acquires and processes the raw data provided by the sensor, performs the required calculations and delivers ready-to-use measures to the master.
Picture

smartRFID

The second smart sensor I'm working on is a RFID reader, called smartRFID.

Based on the functional specifications, the main choices are about the sensor and the MCU. 

Because I'm a hobbyist, I'd prefer to deal with DIP packages rather than SOIC or, even worse, SSOP. 

Selecting the Sensor

After an extensive research, I came with two short-lists, one for RFID readers and the other for MCUs.

RFID readers are available in a very integrated package with, on one side side, connection to the coil and, on the other side, digital output. One key specification is the range. 

As additional benefits, there's no need for a MCU and thus, no programming required! 

However, the digital output requires a protocol adapter to convert the signal into I²C bus. 
Picture

I²C Commands

Based on the functional specifications and after extensive tests on a prototype based on an Arduino board, I defined two sets commands: 
  • high level, 
  • low level.

Learn more about the commands.

Building the Prototype

Contrary the the smartColours sensor, the RFID reader comes ready to use. 

Only a protocol adapter with logic level converter is required. So there's no need for a prototype!

Finalised and Working Sensor

Here is the finalised sensor, which works as expected!

It allows reading the RFID tags at 3 cm.
Photo
Powered by Create your own unique website with customizable templates.